A Construction of Semimodular Lattices
نویسنده
چکیده
In this paper we prove that if !.l' is a finite lattice. and r is an integral valued function on !.l' satisfying some very natural then there exists a finite geometric (that is.• semimodular and atomistic) lattice containing asa sublatticesuch that r !.l'restricted to Sf. Moreover. we show that if, for all intervals of. semimodular lattices of length at most r(e) are given. then can be chosen to its interval as a cover preserving As we obtain results of R. P. and D. T. Finkbeiner. AMS (MOS) subject classifications (1980). 06CIO.
منابع مشابه
Frankl's Conjecture for a subclass of semimodular lattices
In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...
متن کاملNotes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices
A recent result of G. Czédli and E. T. Schmidt gives a construction of slim (planar) semimodular lattices from planar distributive lattices by adding elements, adding “forks”. We give a construction that accomplishes the same by deleting elements, by “resections”.
متن کاملSemimodular Lattices and the Hall–dilworth Gluing Construction
We present a new gluing construction for semimodular lattices, related to the Hall–Dilworth construction. The gluing constructions in the lattice theory started with a paper of M. Hall and R. P. Dilworth [4] to prove that there exists a modular lattice that cannot be embedded in any complemented modular lattice. This construction is the following: let K and L be lattices, let F be a filter of K...
متن کاملSlim Semimodular Lattices. I. A Visual Approach
A finite lattice L is called slim if no three join-irreducible elements of L form an antichain. Slim lattices are planar. Slim semimodular lattices play the main role in [3], where lattice theory is applied to a purely group theoretical problem. After exploring some easy properties of slim lattices and slim semimodular lattices, we give two visual structure theorems for slim semimodular lattices.
متن کاملSlim Semimodular Lattices. II. A Description by Patchwork Systems
Rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009. By a patch lattice we mean a rectangular lattice whose weak corners are coatoms. As a sort of gluings, we introduce the concept of a patchwork system. We prove that every glued sum indecomposable planar semimodular lattice is a patchwork of its maximal patch lattice intervals “sewn togeth...
متن کامل